Step by Step instructions for drift spectroscopy

Below are the steps to capturing the drift spectrum of a bright star with your DSLR and the Star Analyser grating. You do not need a tracking drive – just a simple tripod.

You can use almost any DSLR, including Canon, Nikon, etc. You’ll use a Star Analyser grating ($199, link). To mount the grating on your camera lens, you can use an AD-55 adapter ($38, link) and a thread adapter ring if necessary ($5, link).

If you have any questions about the instructions below, please don’t hesitate to contact us at www.fieldtestedsystems.com/contact.

It’s best to start with a bright star that will have strong Hydrogen alpha absorption lines (like Vega, a Type A star). Contact us if necessary for help finding a good target.
1. Initial Setup

Mount your camera on a tripod. (See the appendix for an additional note on tripods.) Screw the AD-55 adapter snugly into the lens cap/filter threads of your DSLR. Although you can also use a fixed lens, a variable zoom (~50-130 mm) gives you more flexibility. (Or order a Star Analyser-200 rather than 100 and use a standard non-zoom lens.)

2. Mounting the Star Analyser Diffraction Grating

Screw the Star Analyser grating into the AD-55 adapter so that the marker line is at the top.

Locking the grating from rotating

Use a piece of blue painting tape to lock your grating in place. Or, your Star Analyser grating came with an optional small lock ring which can be helpful in securing the grating in the proper 12 o’clock orientation. To use the lock ring, thread it into the AD-55 so that it’s flush with the face. Then give it a few more turns in so that some AD-55 threads are visible from the front. Then screw the grating into AD-55 until it’s snug against the lock ring. By changing the position of the lock ring, you can control the angle of the grating when it’s tightened. Some users find it easier to use a small dab of silicon chalking, or a piece of plumbers tape on the threads.
3. Orienting the Star Analyser Grating

Point your camera at a terrestrial light source that is a point — a small LED reading light across the room or a distant street light. Depending on your zoom setting, there will be two or more spectra visible in the viewfinder –on both sides of the light source. *Use the brightest of the two spectra that appear closest to the light source.*

Fine tune the 12 o’clock orientation of the marker line that you set in Step 2 by rotating the Star Analyser grating until the rainbow spectrum is exactly *vertical.* (Fig. 2)

You can use your zoom to make the spectrum longer, but *make sure you can still see both the light source and the brighter spectrum in the viewfinder,* as shown below. Note down your approximate zoom setting.

Figure 2. When the grating is mounted in the proper rotation, a spectrum appears vertically above a compact light source.
4. Orienting the Camera

Take a 15-second exposure of your target star. If you can’t see your target star in the resulting image, you may need to increase your exposure time. (To make the star brighter, you may wish to remove the Star Analyser for this step.)

Using a series of trial-and-error images, lean your camera to the left or right (rotate counter-clockwise or clockwise) until the star image is spread horizontally across the image as shown below:

If you’re a teacher, this step is a good way for your students to get some hands-on familiarity with the motion of the stars in the sky. At the meridian, the camera will be oriented as shown in Fig. 2. Targets that are East of the meridian are still “rising” and will require the camera to be rotated counter-clockwise for the star motion to be horizontal in the viewfinder as shown in Fig 3.

Want to skip this step? Use a SkyTracker or other tracking mount: link.
5. Capture your Spectrum!

If you removed the Star Analyser in the preceding step, remount it in the same orientation and lock it in place. Set your zoom level to the level you noted in step 3.

Take a series of trial-and-error time-exposures of your target star using different durations until you get an image (Fig. 3) in which the spectrum is smeared across five, ten or more pixels.

If you are unable to get the spectrum bright enough by increasing your exposure time, you can increase the brightness by reducing the zoom level that so the spectrum is more compact on the sensor.

An ideal way to capture spectra is to connect the camera to a laptop in the field. As you take each image, download it to the laptop. You can then confirm that the spectrum is vertical, the star horizontal, and that the focus is sharp. If you install the RSpec software on your laptop, you can actually determine the quality of the spectrum as you capture images by examining the profile graph for clear absorption lines. (Configure the RSpec “Image”-tab to automatically load images as they appear in a specific folder.)
7. Processing your data

Use the Rotate command in the RSpec software to orient the spectrum so that it is horizontal, with the star on the left. If your camera and grating rotation weren’t exact, you may be able to improve the spectrum with Slant command on the RSpec Rotate screen.

Calibrate the image in Angstroms or nanometers. We strongly suggest you start with a Type A star because these stars have very clear Hydrogen Balmer lines, making their spectra easy to calibrate. (After calibrating on a Type-A star, you can calibrate any star using RSpec’s One Point Calibration method described in video #24 at link.)

See the software tutorials in the Video Library at our astronomy site: www.rspec-astro.com.

If you’re running the RSpec-Explorer educational software, you can enable the astronomy features and switch to Angstroms on the Advanced tab of the Tools, Option screen.
Appendix

We suggest you begin by imaging stars close to the meridian so you avoid the need to steeply flip the camera to the side, which can be unwieldy. If you image stars that are far off to the East or West of the meridian, the camera needs to be flipped quite a bit, as shown below:

If your tripod has difficulty flipping your camera to the side, you can add a ball head adapter. To see how a ball head adapter works, see the first minute of this YouTube video: link. Here are some examples of adapters on Amazon: link, link, and link. Here’s an example of a tripod with a ball head: link.